Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biotechnol J ; 18(8): e2200590, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37149736

RESUMO

L-2-aminobutyric acid (L-2-ABA) is a chiral precursor for the synthesis of anti-epileptic drug levetiracetam and anti-tuberculosis drug ethambutol. Asymmetric synthesis of L-2-ABA by leucine dehydrogenases has been widely developed. However, the limitations of natural enzymes, such as poor stability, low catalytic efficiency, and inhibition of high-concentration substrates, limit large-scale applications. Herein, by directed screening of a metagenomic library from unnatural amino acid-enriched environments, a robust leucine dehydrogenase, TvLeuDH, was identified, which exhibited high substrate tolerance and excellent enzymatic activity towards 2-oxobutyric acid. In addition, TvLeuDH has strong affinity for NADH. Subsequently, a three-enzyme co-expression system containing L-threonine deaminase, TvLeuDH, and glucose dehydrogenase was established. By optimizing reaction conditions, 1.5 M L-threonine could be converted to L-2-ABA with a 99% molar conversion rate and a space-time yield of 51.5 g·L-1 ·h-1 . In this process, no external coenzyme was added. The robustness of TvLeuDH allowed the reaction to be performed without the addition of extra salt as the buffer, demonstrating the simplest reaction system currently reported. These unique properties for the efficient and environmentally friendly production of chiral amino acids make TvLeuDH a particularly promising candidate for industrial applications, which reveals the great potential of directed metagenomics for industrial biotechnology.


Assuntos
Aminobutiratos , Metagenoma , Leucina Desidrogenase/genética , Leucina Desidrogenase/metabolismo , Aminobutiratos/metabolismo , Biotecnologia , Leucina
2.
Enzyme Microb Technol ; 166: 110225, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36921551

RESUMO

L-Phosphinothricin (L-PPT) is the effective constituent in racemic PPT (a high-efficiency and broad-spectrum herbicide), and the exploitation of green and sustainable synthesis route for L-PPT has always been the focus in pesticide industry. In recent years, "one-pot, two-step" enzyme-mediated cascade strategy is a mainstream pathway to obtain L-PPT. Herein, RgDAAO and BsLeuDH were applied to expand "one-pot, two-step" process. Notably, a NADH-dependent leucine dehydrogenase from Bacillus subtilis (BsLeuDH) was firstly characterized and attempted to generate L-PPT, achieving an excellent enantioselectivity (99.9% ee). Meanwhile, a formate dehydrogenase from Pichia pastoris (PpFDH) was utilized to implement NADH cofactor regeneration and only CO2 was by-product. Sufficient amount of the corresponding keto acid precursor PPO was obtained by oxidation of D-PPT relying on a D-amino acid oxidase from Rhodotorula gracilis (RgDAAO) with content conversion (46.1%). L-PPT was ultimately prepared from racemized PPT via oxidative deamination catalyzed by RgDAAO and reductive amination catalyzed by BsLeuDH, achieving 80.3% overall yield and > 99.9% ee value.


Assuntos
NADH Desidrogenase , NAD , Leucina Desidrogenase/genética , Leucina Desidrogenase/metabolismo , NAD/metabolismo , Leucina , NADH Desidrogenase/metabolismo
3.
Biotechnol J ; 18(5): e2200465, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36738237

RESUMO

Enzymatic asymmetric synthesis of chiral amino acids has great industrial potential. However, the low catalytic efficiency of high-concentration substrates limits their industrial application. Herein, using a combination of substrate catalytic efficiency prediction based on "open to closed" conformational change and substrate specificity prediction, a novel leucine dehydrogenase (TsLeuDH), with high substrate catalytic efficiency toward benzoylformic acid (BFA) for producing l-phenylglycine (l-Phg), was directly identified from 4695 putative leucine dehydrogenases in a public database. The specific activity of TsLeuDH was determined to be as high as 4253.8 U mg-1 . Through reaction process optimization, a high-concentration substrate (0.7 m) was efficiently and completely converted within 90 min in a single batch, without any external coenzyme addition. Moreover, a continuous flow-feeding approach was designed using gradient control of the feed rate to reduce substrate accumulation. Finally, the highest overall substrate concentration of up to 1.2 m BFA could be aminated to l-Phg with conversion of >99% in 3 h, demonstrating that this new combination of enzyme process development is promising for large-scale application of l-Phg.


Assuntos
Aminoácidos , Glicina , Leucina Desidrogenase/genética , Leucina Desidrogenase/metabolismo , Catálise , Especificidade por Substrato , Leucina
4.
J Biotechnol ; 358: 17-24, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987310

RESUMO

(S)-2-chlorophenylglycine ((S)-CPG) is a key chiral intermediate for the synthesis of clopidogrel. Herein, a novel, efficient and environmentally friendly chemo-enzymatic route for the preparation of optically pure (S)-CPG was developed. A straightforward chemical synthesis of the corresponding prochiral keto acid substrate (2-chlorophenyl)glyoxylic acid (CPGA) was developed with 91.7% yield, which was enantioselectively aminated by leucine dehydrogenase (LeuDH) to (S)-CPG. Moreover, protein engineering of LeuDH was performed via directed evolution and semi-rational design. A beneficial variant EsLeuDH-F362L with enlarged substrate-binding pocket and increased hydrogen bond between K77 and substrate CPGA was constructed, which exhibited 2.1-fold enhanced specific activity but decreased thermal stability. Coupled with a glucose dehydrogenase from Bacillus megaterium (BmGDH) for NADH regeneration, EsLeuDH-F362L completely converted up to 0.5 M CPGA to (S)-CPG in 8 h at 40 °C.


Assuntos
Proteínas de Bactérias , NAD , Proteínas de Bactérias/metabolismo , Biocatálise , Clopidogrel , Glucose 1-Desidrogenase/metabolismo , Leucina Desidrogenase/metabolismo , NAD/metabolismo
5.
Mol Cells ; 45(7): 495-501, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35698914

RESUMO

Leucine dehydrogenase (LDH, EC 1.4.1.9) catalyzes the reversible deamination of branched-chain L-amino acids to their corresponding keto acids using NAD+ as a cofactor. LDH generally adopts an octameric structure with D4 symmetry, generating a molecular mass of approximately 400 kDa. Here, the crystal structure of the LDH from Pseudomonas aeruginosa (Pa-LDH) was determined at 2.5 Å resolution. Interestingly, the crystal structure shows that the enzyme exists as a dimer with C2 symmetry in a crystal lattice. The dimeric structure was also observed in solution using multiangle light scattering coupled with size-exclusion chromatography. The enzyme assay revealed that the specific activity was maximal at 60°C and pH 8.5. The kinetic parameters for three different amino acid and the cofactor (NAD+) were determined. The crystal structure represents that the subunit has more compact structure than homologs' structure. In addition, the crystal structure along with sequence alignments indicates a set of non-conserved arginine residues which are important in stability. Subsequent mutation analysis for those residues revealed that the enzyme activity reduced to one third of the wild type. These results provide structural and biochemical insights for its future studies on its application for industrial purposes.


Assuntos
NAD , Pseudomonas aeruginosa , Aminoácidos , Leucina Desidrogenase/metabolismo , NAD/metabolismo , Especificidade por Substrato
6.
Molecules ; 26(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885864

RESUMO

α-Amino acids and α-keto acids are versatile building blocks for the synthesis of several commercially valuable products in the food, agricultural, and pharmaceutical industries. In this study, a novel transamination-like reaction catalyzed by leucine dehydrogenase was successfully constructed for the efficient enzymatic co-synthesis of α-amino acids and α-keto acids. In this reaction mode, the α-keto acid substrate was reduced and the α-amino acid substrate was oxidized simultaneously by the enzyme, without the need for an additional coenzyme regeneration system. The thermodynamically unfavorable oxidation reaction was driven by the reduction reaction. The efficiency of the biocatalytic reaction was evaluated using 12 different substrate combinations, and a significant variation was observed in substrate conversion, which was subsequently explained by the differences in enzyme kinetics parameters. The reaction with the selected model substrates 2-oxobutanoic acid and L-leucine reached 90.3% conversion with a high total turnover number of 9.0 × 106 under the optimal reaction conditions. Furthermore, complete conversion was achieved by adjusting the ratio of addition of the two substrates. The constructed reaction mode can be applied to other amino acid dehydrogenases in future studies to synthesize a wider range of valuable products.


Assuntos
Aminoácidos/biossíntese , Cetoácidos/metabolismo , Leucina Desidrogenase/metabolismo , Aminação , Aminoácidos/química , Compostos de Amônio/metabolismo , Bacillus cereus/enzimologia , Catálise , Concentração de Íons de Hidrogênio , Cetoácidos/química , Cinética , NAD/metabolismo , Oxirredução , Especificidade por Substrato
7.
Appl Microbiol Biotechnol ; 105(9): 3625-3634, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33929595

RESUMO

L-tert-leucine (L-Tle) is widely used as vital chiral intermediate for pharmaceuticals and as chiral auxiliarie for organocatalysis. L-Tle is generally prepared via the asymmetric reduction of trimethylpyruvate (TMP) catalyzed by NAD+-dependent leucine dehydrogenase (LeuDH). To improve the catalytic efficiency and coenzyme affinity of LeuDH from Bacillus cereus, mutation libraries constructed by error-prone PCR and iterative saturation mutation were screened by two kinds of high-throughput methods. Compared with the wild type, the affinity of the selected mutant E24V/E116V for TMP and NADH increased by 7.7- and 2.8-fold, respectively. And the kcat/Km of E24V/E116V on TMP was 5.4-fold higher than that of the wild type. A coupled reaction comprising LeuDH with glucose dehydrogenase of Bacillus amyloliquefaciens resulted in substrate inhibition at high TMP concentrations (0.5 M), which was overcome by batch-feeding of the TMP substrate. The total turnover number and specific space-time conversion of 0.57 M substrate increased to 11,400 and 22.8 mmol·h-1·L-1·g-1, respectively. KEY POINTS: • The constructed new high-throughput screening strategy takes into account the two indicators of catalytic efficiency and coenzyme affinity. • A more efficient leucine dehydrogenase (LeuDH) mutant (E24V/E116V) was identified. • E24V/E116V has potential for the industrial synthesis of L-tert-leucine.


Assuntos
Coenzimas , Valina , Catálise , Coenzimas/metabolismo , Cinética , Leucina , Leucina Desidrogenase/genética , Leucina Desidrogenase/metabolismo , Valina/análogos & derivados
8.
Bioresour Technol ; 326: 124665, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33540211

RESUMO

Leucine dehydrogenase (LDH) is widely used in the preparation of L-2-aminobutyric acid (L-2-ABA), however its wide application is limited by 2-ketobutyric acid (2-OBA) inhibition. Firstly, a novel high-throughput screening method of LDH was established, specific enzyme activity and 2-OBA tolerance of Lys72Ala mutant were 33.3% higher than those of the wild type. Subsequently, we constructed a single cell comprised of ivlA, EsldhK72A, fdh and optimized expression through fine-tuning RBS intensity, so that the yield of E. coli BL21/pET28a-R3ivlA-EsldhK72A-fdh was 2.6 times higher than that of the original strain. As a result, 150 g L-threonine was transformed to 121 g L-2-ABA in 5 L fermenter with 95% molar conversion rate, and a productivity of 5.04 g·L-1·h-1, which is the highest productivity of L-2-ABA currently reported by single-cell biotransformation. In summary, our research provided a green synthesis for L-2-ABA, which has potential for industrial production of drug precursors.


Assuntos
Aminobutiratos , Escherichia coli , Aminobutiratos/metabolismo , Biotransformação , Escherichia coli/genética , Escherichia coli/metabolismo , Leucina Desidrogenase/genética , Leucina Desidrogenase/metabolismo
9.
Microb Cell Fact ; 20(1): 3, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407464

RESUMO

BACKGROUND: Biosynthesis of L-tert-leucine (L-tle), a significant pharmaceutical intermediate, by a cofactor regeneration system friendly and efficiently is a worthful goal all the time. The cofactor regeneration system of leucine dehydrogenase (LeuDH) and glucose dehydrogenase (GDH) has showed great coupling catalytic efficiency in the synthesis of L-tle, however the multi-enzyme complex of GDH and LeuDH has never been constructed successfully. RESULTS: In this work, a novel fusion enzyme (GDH-R3-LeuDH) for the efficient biosynthesis of L-tle was constructed by the fusion of LeuDH and GDH mediated with a rigid peptide linker. Compared with the free enzymes, both the environmental tolerance and thermal stability of GDH-R3-LeuDH had a great improved since the fusion structure. The fusion structure also accelerated the cofactor regeneration rate and maintained the enzyme activity, so the productivity and yield of L-tle by GDH-R3-LeuDH was all enhanced by twofold. Finally, the space-time yield of L-tle catalyzing by GDH-R3-LeuDH whole cells could achieve 2136 g/L/day in a 200 mL scale system under the optimal catalysis conditions (pH 9.0, 30 °C, 0.4 mM of NAD+ and 500 mM of a substrate including trimethylpyruvic acid and glucose). CONCLUSIONS: It is the first report about the fusion of GDH and LeuDH as the multi-enzyme complex to synthesize L-tle and reach the highest space-time yield up to now. These results demonstrated the great potential of the GDH-R3-LeuDH fusion enzyme for the efficient biosynthesis of L-tle.


Assuntos
Bacillus cereus/enzimologia , Bacillus megaterium/enzimologia , Glucose 1-Desidrogenase/metabolismo , Leucina Desidrogenase/metabolismo , Leucina/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Glucose 1-Desidrogenase/química , Glucose 1-Desidrogenase/genética , Leucina Desidrogenase/química , Leucina Desidrogenase/genética , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
10.
Subcell Biochem ; 96: 355-372, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252736

RESUMO

Thermostability is a key factor in the industrial and clinical application of enzymes, and understanding mechanisms of thermostability is valuable for molecular biology and enzyme engineering. In this chapter, we focus on the thermostability of leucine dehydrogenase (LDH, EC 1.4.1.9), an amino acid-metabolizing enzyme that is an NAD+-dependent oxidoreductase which catalyzes the deamination of branched-chain l-amino acids (BCAAs). LDH from Geobacillus stearothermophilus (GstLDH) is a highly thermostable enzyme that has already been applied to quantify the concentration of BCAAs in biological specimens. However, the molecular mechanism of its thermostability had been unknown because no high-resolution structure was available. Here, we discuss the thermostability of GstLDH on the basis of its structure determined by cryo-electron microscopy. Sequence comparison with other structurally characterized LDHs (from Lysinibacillus sphaericus and Sporosarcina psychrophila) indicated that non-conserved residues in GstLDH, including Ala94, Tyr127, and the C-terminal region, are crucial for oligomeric stability through intermolecular interactions between protomers. Furthermore, NAD+ binding to GstLDH increased the thermostability of the enzyme as additional intermolecular interactions formed on cofactor binding. This knowledge is important for further applications and development of amino acid metabolizing enzymes in industrial and clinical fields.


Assuntos
Leucina Desidrogenase/química , Leucina Desidrogenase/metabolismo , Bacillaceae/enzimologia , Microscopia Crioeletrônica , Estabilidade Enzimática , Geobacillus stearothermophilus/enzimologia , Leucina Desidrogenase/ultraestrutura , Sporosarcina/enzimologia
11.
Electron. j. biotechnol ; 47: 83-88, sept. 2020. graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1253097

RESUMO

BACKGROUND: L-tert-Leucine has been widely used in pharmaceutical, chemical, and other industries as a vital chiral intermediate. Compared with chemical methods, enzymatic methods to produce L-tert-leucine have unparalleled advantages. Previously, we found a novel leucine dehydrogenase from the halophilic thermophile Laceyella sacchari (LsLeuDH) that showed good thermostability and great potential for the synthesis of L-tertleucine in the preliminary study. Hence, we manage to use the LsLeuDH coupling with a formate dehydrogenase from Candida boidinii (CbFDH) in the biosynthesis of L-tert-leucine through reductive amination in the present study. RESULT: The double-plasmid recombinant strain exhibited higher conversion than the single-plasmid recombinant strain when resting cells cultivated in shake flask for 22 h were used. Under the optimized conditions, the double-plasmid recombinant E. coli BL21 (pETDute-FDH-LDH, pACYCDute-FDH) transformed 1 mol·L-1 trimethylpyruvate (TMP) completely into L-tert-leucine with greater than 99.9% ee within 8 h. CONCLUSIONS: The LsLeuDH showed great ability to biosynthesize L-tert-leucine. In addition, it provided a new option for the biosynthesis of L-tert-leucine.


Assuntos
Leucina Desidrogenase/metabolismo , Bacillales/enzimologia , Leucina/biossíntese , Temperatura , Proteínas Recombinantes , Escherichia coli , Concentração de Íons de Hidrogênio
12.
Sheng Wu Gong Cheng Xue Bao ; 36(5): 992-1001, 2020 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-32567282

RESUMO

In this study, Escherichia coli BL21 (DE3) was used as the host to construct 2 recombinant E. coli strains that co-expressed leucine dehydrogenase (LDH, Bacillus cereus)/formate dehydrogenase (FDH, Ancylobacter aquaticus), or leucine dehydrogenase (LDH, Bacillus cereus)/alcohol dehydrogenase (ADH, Rhodococcus), respectively. L-2-aminobutyric acid was then synthesized by L-threonine deaminase (L-TD) with LDH-FDH or LDH-ADH by coupling with two different NADH regeneration systems. LDH-FDH process and LDH-ADH process were optimized and compared with each other. The optimum reaction pH of LDH-FDH process was 7.5, and the optimum reaction temperature was 35 °C. After 28 h, the concentration of L-2-aminobutyric acid was 161.8 g/L with a yield of 97%, when adding L-threonine in batches for controlling 2-ketobutyric acid concentration less than 15 g/L and using 50 g/L ammonium formate, 0.3 g/L NAD+, 10% LDH-FDH crude enzyme solution (V/V) and 7 500 U/L L-TD. The optimum reaction pH of LDH-ADH process was 8.0, and the optimum reaction temperature was 35 °C. After 24 h, the concentration of L-2-aminobutyric acid was 119.6 g/L with a yield of 98%, when adding L-threonine and isopropanol (1.2 times of L-threonine) in batches for controlling 2-ketobutyric acid concentration less than 15 g/L, removing acetone in time and using 0.3 g/L NAD⁺, 10% LDH-ADH crude enzyme solution (V/V) and 7 500 U/L L-TD. The process and results used in this paper provide a reference for the industrialization of L-2-aminobutyric acid.


Assuntos
Aminobutiratos , Leucina Desidrogenase , NAD , Aminobutiratos/metabolismo , Escherichia coli/genética , Formiato Desidrogenases/metabolismo , Leucina Desidrogenase/metabolismo , NAD/metabolismo
13.
Sheng Wu Gong Cheng Xue Bao ; 36(4): 782-791, 2020 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-32347072

RESUMO

L-2-aminobutyric acid (L-ABA) is an important chemical raw material and chiral pharmaceutical intermediate. The aim of this study was to develop an efficient method for L-ABA production from L-threonine using a trienzyme cascade route with Threonine deaminase (TD) from Escherichia. coli, Leucine dehydrogenase (LDH) from Bacillus thuringiensis and Formate dehydrogenase (FDH) from Candida boidinii. In order to simplify the production process, the activity ratio of TD, LDH and FDH was 1:1:0.2 after combining different activity ratios in the system in vitro. The above ratio was achieved in the recombinant strain E. coli 3FT+L. Moreover, the transformation conditions were optimized. Finally, we achieved L-ABA production of 68.5 g/L with a conversion rate of 99.0% for 12 h in a 30-L bioreactor by whole-cell catalyst. The environmentally safe and efficient process route represents a promising strategy for large-scale L-ABA production in the future.


Assuntos
Aminobutiratos , Formiato Desidrogenases , Leucina Desidrogenase , Treonina Desidratase , Treonina , Aminobutiratos/síntese química , Bacillus thuringiensis/enzimologia , Candida/enzimologia , Escherichia coli/enzimologia , Formiato Desidrogenases/metabolismo , Leucina Desidrogenase/metabolismo , Treonina/metabolismo , Treonina Desidratase/metabolismo
14.
Int J Mol Sci ; 20(8)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022947

RESUMO

The production of l-leucine was improved by the disruption of ltbR encoding transcriptional regulator and overexpression of the key genes (leuAilvBNCE) of the l-leucine biosynthesis pathway in Corynebacterium glutamicum XQ-9. In order to improve l-leucine production, we rationally engineered C. glutamicum to enhance l-leucine production, by improving the redox flux. On the basis of this, we manipulated the redox state of the cells by mutating the coenzyme-binding domains of acetohydroxyacid isomeroreductase encoded by ilvC, inserting NAD-specific leucine dehydrogenase, encoded by leuDH from Lysinibacillus sphaericus, and glutamate dehydrogenase encoded by rocG from Bacillus subtilis, instead of endogenous branched-chain amino acid transaminase and glutamate dehydrogenase, respectively. The yield of l-leucine reached 22.62 ± 0.17 g·L-1 by strain ΔLtbR-acetohydroxyacid isomeroreductase (AHAIR)M/ABNCME, and the concentrations of the by-products (l-valine and l-alanine) increased, compared to the strain ΔLtbR/ABNCE. Strain ΔLtbR-AHAIRMLeuDH/ABNCMLDH accumulated 22.87±0.31 g·L-1 l-leucine, but showed a drastically low l-valine accumulation (from 8.06 ± 0.35 g·L-1 to 2.72 ± 0.11 g·L-1), in comparison to strain ΔLtbR-AHAIRM/ABNCME, which indicated that LeuDH has much specificity for l-leucine synthesis but not for l-valine synthesis. Subsequently, the resultant strain ΔLtbR-AHAIRMLeuDHRocG/ABNCMLDH accumulated 23.31 ± 0.24 g·L-1 l-leucine with a glucose conversion efficiency of 0.191 g·g-1.


Assuntos
Vias Biossintéticas , Corynebacterium glutamicum/genética , Leucina/genética , Engenharia Metabólica/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Desidrogenase de Glutamato (NADP+)/genética , Desidrogenase de Glutamato (NADP+)/metabolismo , Cetol-Ácido Redutoisomerase/genética , Cetol-Ácido Redutoisomerase/metabolismo , Leucina/metabolismo , Leucina Desidrogenase/genética , Leucina Desidrogenase/metabolismo , Oxirredução
15.
Biotechnol J ; 14(3): e1800253, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30052323

RESUMO

Unnatural amino acids (UAAs) play a key role in modern medicinal chemistry such as small molecules and peptide-based drugs with fast-growing markets. Low efficiency for natural enzymes including leucine dehydrogenase (LeuDH, EC1.4.1.9) are one major challenge for UAA production. Here, rational engineering of LeuDH from Bacillus cereus with a structure-based design approach is studied. The results achieve higher enzymatic activity and stability toward α-keto acid reduction by improving the hydrophobic and rigidity of enzymatic substrate entrance tunnel. High catalytic efficiency for variant E116V is associated with the presence of more hydrophobic tunnels that allows easy substrate diffusion, which is confirmed in absorbance spectroscopy study. For variant T45M/E116V, melting temperature and half-lives of thermal inactivation at 60 °C is 62.8 °C and 29.2 h, respectively, much higher than 48.4 °C and 3.4 h of wild type. Structural analysis indicates that an additional hydrogen bond in ß5 fold is formed in variant T45M, which results in a more rigid ß5 fold leading to better stability. Furthermore, asymmetric synthesis of α-amino acids with coenzyme regeneration reveals higher productivities for variant T45M/E116V. This study indicates the importance of substrate entrance tunnel for enzymatic activities and stability, the engineered LeuDH would better serve UAA production.


Assuntos
Aminoácidos/metabolismo , Bacillus cereus/metabolismo , Cetoácidos/metabolismo , Leucina Desidrogenase/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Engenharia de Proteínas/métodos , Temperatura
16.
Appl Microbiol Biotechnol ; 102(5): 2129-2141, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29352398

RESUMO

Whole-cell catalysis with co-expression of two or more enzymes in a single host as a simple low-cost biosynthesis method has been widely studied and applied but hardly with regulation of multi-enzyme expression. Here we developed an efficient whole-cell catalyst for biosynthesis of L-phenylglycine (L-Phg) from benzoylformic acid through co-expression of leucine dehydrogenase from Bacillus cereus (BcLeuDH) and NAD+-dependent mutant formate dehydrogenase from Candida boidinii (CbFDHA10C) in Escherichia coli with tunable multi-enzyme-coordinate expression system. By co-expressing one to four copies of CbFDHA10C and optimization of the RBS sequence of BcLeuDH in the expression system, the ratio of BcLeuDH to CbFDH in E. coli BL21/pETDuet-rbs 4 leudh-3fdh A10C was finally regulated to 2:1, which was the optimal one determined by enzyme-catalyzed synthesis. The catalyst activity of E. coli BL21/pETDuet-rbs 4 leudh-3fdh A10C was 28.4 mg L-1 min-1 g-1 dry cell weight for L-Phg production using whole-cell transformation, it's was 3.7 times higher than that of engineered E. coli without enzyme expression regulation. Under optimum conditions (pH 8.0 and 35 °C), 60 g L-1 benzoylformic acid was completely converted to pure chiral L-Phg in 4.5 h with 10 g L-1 dry cells and 50.4 g L-1 ammonium formate, and with enantiomeric excess > 99.9%. This multi-enzyme-coordinate expression system strategy significantly improved L-Phg productivity and demonstrated a novel low-cost method for enantiopure L-Phg production.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Glicina/análogos & derivados , Engenharia Metabólica , Bacillus cereus/enzimologia , Bacillus cereus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Candida glabrata/enzimologia , Candida glabrata/genética , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicina/biossíntese , Leucina Desidrogenase/genética , Leucina Desidrogenase/metabolismo
17.
Biotechnol Lett ; 39(4): 529-533, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27999972

RESUMO

OBJECTIVES: To reduce the unpleasant odor during 1-deoxynojirimycin (DNJ) production, the genes of leucine dehydrogenase (bcd) and phosphate butryltransferase (ptb) were deleted from Bacillus amyloliquefaciens HZ-12, and the concentrations of branched-chain short fatty acids (BCFAs) and DNJ were compared. RESULTS: By knockout of the ptb gene, 1.01 g BCFAs kg-1 was produced from fermented soybean by HZ-12Δptb. This was a 56% decrease compared with that of HZ-12 (2.27 g BCFAs kg-1). Moreover, no significant difference was found in the DNJ concentration (0.7 g kg-1). After further deletion of the bcd gene from HZ-12Δptb, no BCFAs was detected in fermented soybeans with HZ-12ΔptbΔbcd, while the DNJ yield decreased by 26% compared with HZ-12. CONCLUSIONS: HZ-12Δptb had decreased BCFAs formation but also maintained the stable DNJ yield, which contributed to producing DNJ-rich products with decreased unpleasant smell.


Assuntos
1-Desoxinojirimicina/metabolismo , Bacillus amyloliquefaciens/metabolismo , Ácidos Graxos/biossíntese , Microbiologia de Alimentos , Engenharia Metabólica , Bacillus amyloliquefaciens/genética , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Regulação para Baixo , Fermentação , Expressão Gênica , Técnicas de Inativação de Genes , Genes Bacterianos , Leucina Desidrogenase/metabolismo , Odorantes/prevenção & controle , Fosfato Acetiltransferase/metabolismo , /metabolismo
18.
Appl Biochem Biotechnol ; 182(3): 898-909, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28000046

RESUMO

L-2-aminobutyric acid (L-ABA) as a precursor for the anticonvulsant and the antituberculotic is a key intermediate in the chemical and pharmaceutical industries. Recently, leucine dehydrogenase (LeuDH) with NAD+ regeneration was developed for L-ABA production on a large scale. Previously, the L-ABA yield was improved by optimizing conversion conditions, including cofactor regeneration and enzyme immobilization but not protein engineering on LeuDH due to lacking an applicable high-throughput screening (HTS) method. Recently, an HTS assay was developed by us, which enables researchers to engineer LeuDH in a relatively short period of time. Herein, a semirational engineering was performed on LeuDH to increase the catalytic efficiency of BcLeuDH. Firstly, the structure of wild-type (WT) BcLeuDH was modeled and seven potentially beneficial positions were selected for mutation. Five beneficial variants were then identified from the seven site-saturation mutagenesis (SSM) libraries by HTS and confirmed by rescreening via amino acid analyzer. The "best" variant M5 (WT + Q358N) showed 44.5-fold higher catalytic efficiency (k cat/K M) than BcLeuDH WT, which suggested that BcLeuDH M5 is an attractive candidate for L-ABA production on a large scale. Furthermore, the structure-functional relationship was investigated based on the docking and kinetic results.


Assuntos
Substituição de Aminoácidos , Aminobutiratos/metabolismo , Bacillus , Proteínas de Bactérias , Leucina Desidrogenase , Engenharia Metabólica , Mutação de Sentido Incorreto , Bacillus/enzimologia , Bacillus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Leucina Desidrogenase/genética , Leucina Desidrogenase/metabolismo
19.
Appl Biochem Biotechnol ; 181(4): 1454-1464, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27866308

RESUMO

L-tert-Leucine (L-Tle) and its derivatives are extensively used as crucial building blocks for chiral auxiliaries, pharmaceutically active ingredients, and ligands. Combining with formate dehydrogenase (FDH) for regenerating the expensive coenzyme NADH, leucine dehydrogenase (LeuDH) is continually used for synthesizing L-Tle from α-keto acid. A multilevel factorial experimental design was executed for research of this system. In this work, an efficient optimization method for improving the productivity of L-Tle was developed. And the mathematical model between different fermentation conditions and L-Tle yield was also determined in the form of the equation by using uniform design and regression analysis. The multivariate regression equation was conveniently implemented in water, with a space time yield of 505.9 g L-1 day-1 and an enantiomeric excess value of >99 %. These results demonstrated that this method might become an ideal protocol for industrial production of chiral compounds and unnatural amino acids such as chiral drug intermediates.


Assuntos
Biotecnologia/métodos , Leucina/biossíntese , Modelos Teóricos , Valina/análogos & derivados , Aminação , Escherichia coli/genética , Escherichia coli/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Engenharia Genética , Leucina/química , Leucina Desidrogenase/genética , Leucina Desidrogenase/metabolismo , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , Análise de Regressão , Valina/biossíntese , Valina/química
20.
Appl Biochem Biotechnol ; 180(6): 1180-1195, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27387958

RESUMO

Leucine dehydrogenase (LDH) and formate dehydrogenase (FDH) were assembled together based on a high-affinity interaction between two different cohesins in a miniscaffoldin and corresponding dockerins in LDH and FDH. The miniscaffoldin with two enzymes was further absorbed by regenerated amorphous cellulose (RAC) to form a bifunctional enzyme complex (miniscaffoldin with LDH and FDH adsorbed by RAC, RSLF) in vitro. The enzymatic characteristics of the bifunctional enzyme complex and free enzymes mixture were systematically compared. The synthesis of L-tert-leucine by the RSLF and free enzyme mixture were compared under different concentrations of enzymes, coenzyme, and substrates. The initial L-tert-leucine production rate by RSLF was enhanced by 2-fold compared with that of the free enzyme mixture. Ninety-one grams per liter of L-tert-leucine with an enantiomeric purity of 99 % e.e. was obtained by RSLF multienzyme catalysis. The results indicated that the bifuntional enzyme complex based on cohesin-dockerin interaction has great potential in the synthesis of L-tert-leucine.


Assuntos
Vias Biossintéticas , Formiato Desidrogenases/metabolismo , Leucina Desidrogenase/metabolismo , Leucina/biossíntese , Aminação , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Leucina/química , Complexos Multienzimáticos/metabolismo , NAD/metabolismo , Oxirredução , Ácido Pirúvico/metabolismo , Proteínas Recombinantes/isolamento & purificação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...